Speeding up lattice sieve with Xeon Phi coprocessor
نویسندگان
چکیده
Major substep in a lattice sieve algorithm which solves the Euclidean shortest vector problem (SVP) is the computation of sums and Euclidean norms of many vector pairs. Finding a solution to the SVP is the foundation of an attack against many lattice based crypto systems. We optimize the main subfunction of a sieve for the regular main processor and for the co-processor to speed up the algorithm in total. Furthermore, we show that the co-processor can provide a significant performance improvement for highly parallel tasks in the lattice sieve. Four-fold speed up achieved, compared to the CPU, indicates that co-processors are a viable choice for implementation of lattice sieve algorithms.
منابع مشابه
Exact diagonalization of quantum lattice models on coprocessors
We implement the Lanczos algorithm on an Intel Xeon Phi coprocessor and compare its performance to a multi-core Intel Xeon CPU and an NVIDIA graphics processor. The Xeon and the Xeon Phi are parallelized with OpenMP and the graphics processor is programmed with CUDA. The performance is evaluated by measuring the execution time of a single step in the Lanczos algorithm. We study two quantum latt...
متن کاملLattice QCD on Intel R © Xeon Phi TM coprocessors
Lattice QuantumChromodynamics (LQCD) is currently the only known model independent, non perturbative computational method for calculations in the theory of the strong interactions, and is of importance in studies of nuclear and high energy physics. LQCD codes use large fractions of supercomputing cycles worldwide and are often amongst the first to be ported to new high performance computing arc...
متن کاملPhiTM for DNA Sequence Analysis
Genetic information is increasing exponentially, doubling every 18 months. Analyzing this information within a reasonable amount of time requires parallel computing resources. While considerable research has addressed DNA analysis using GPUs, so far not much attention has been paid to the Intel Xeon Phi coprocessor. In this paper we present an algorithm for large-scale DNA analysis that exploit...
متن کاملAccelerating gravitational microlensing simulations using the Xeon Phi coprocessor
Recently Graphics Processing Units (GPUs) have been used to speed up very CPU-intensive gravitational microlensing simulations. In this work, we use the Xeon Phi coprocessor to accelerate such simulations and compare its performance on a microlensing code with that of NVIDIA’s GPUs. For the selected set of parameters evaluated in our experiment, we find that the speedup by Intel’s Knights Corne...
متن کاملAccelerating DNA Sequence Analysis using Intel Xeon Phi
Genetic information is increasing exponentially, doubling every 18 months. Analyzing this information within a reasonable amount of time requires parallel computing resources. While considerable research has addressed DNA analysis using GPUs, so far not much attention has been paid to the Intel Xeon Phi coprocessor. In this paper we present an algorithm for large-scale DNA analysis that exploit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017